Assignment 7

Fundamentals of Algebra; Factoring Polynomials

Textbook Assignment: Chapters 9, 10 (111-117)

- 7-1. The literal numbers a, x, and p are more general than the numbers 9, 8, and 7.
- 7-2. The commutative law for addition is illustrated by the equation
 - 1. ab = ba

 - 2. a + a = b + b3. a + b = b + a4. a(b + c) = ab + ac
- 7-3. The associative law of multiplication is illustrated by the equation
 - 1. abc = acb = cba
 - 2. $a \times (b + c) = c \times (b + a)$

 - 3. a (b + c + d) = ab + ac + ad4. $a \cdot (b \cdot c) = a \cdot b \cdot c = (a \cdot b) \cdot c$
- 7-4. If a = 2, b = -3, and c = 4, the algebraic sum of a - b - c equals
 - 1. -5 2. 1 3. 3
- 7-5. If r = 1, s = 3, t = 12, and x = 15, what is the value of the expression
 - $t \frac{2rx}{s}$?
 - 1. -3

- 7-6. The algebraic expression

$$\frac{a+b-c\sqrt{ab}}{2}$$

is considered to be three numbers.

- 7-7. What is the value of the algebraic expression
 - $5x^2 2xy + (3x)^2$

when x = 2 and y = -3?

- 1. 44
- 2. 68
- 3. 124
- 4. 148

- 7-8. What name is given to the algebraic expression ax - $2bx + cx^2 - 4$?
 - 1. Monomial
 - 2. Binomial
 - 3. Trinomial
 - 4. Polynomial
- 7-9. Which statement is true regarding the monomial 17xyz?
 - 1. 17 is the coefficient of xyz.
 - 2. 17x is the coefficient of yz.
 - 3. 17xy is the coefficient of z.
 - 4. Each of the above is a true statement.
- 7-10. In the expression xy, what is the coefficient of xy?
 - 1. 1
 - 2. x
 - 3. y 4. x y
- 7-11. What is the coefficient of x^2y in the expression x^2y - ab?
 - 1. 1
 - 2. 2
 - 3. x
 - 4. y
- 7-12. Two terms of an expression are said to be like if they contain
 - 1. at least one factor in common
 - 2. the same numerical coefficient
 - 3. the same literal factors with only their exponents different
 - 4. the same literal factors raised to the same powers
- 7-13. The like terms in the expression
 - $2 ac^{2} 2bc^{2} + ac^{2} 2c^{2}$ are
 - 1. 2ac² and 2bc²
 - $2. 2ac^2$ and ac^2
 - 3. $2ac^2$ and $2c^2$
 - 4. $2bc^2$ and $2c^2$

7-14. What is the result when the expression

$$6x - 4x^2$$

- is simplified?
- 1. 2x²
- 2.2(1-x)
- 3. 2x(3 2x)
- 4. $2x(x^2) 3$
- 7-15. What is the correct procedure for combining the like terms 7cd2 and -cd2?
 - 1. Add -1 to 7 and use this sum as the coefficient of cd2.
 - 2. Subtract -1 from 7 and use this difference as the coefficient of cd2.
 - 3. Add 1 to 7 and use this sum as the coefficient of $-cd^2$.
 - 4. Add -1 to 7 and use this sum as the coefficient of -cd2.
- 7-16. Which of the following expressions are equivalent, if any?
 - A. 6x (x y + 4)
 - B. 6x [x y + 4]
 - C. $6x \{x y + 4\}$ D. $6x \overline{x y + 4}$

 - 1. A and B only are equivalent.
 - 2. A, B, and C only are equivalent.
 - 3. All are equivalent.
 - 4. None are equivalent.
- 7-17. After the removal of parentheses, the expression 6 - (-x + y - z) becomes
 - 1. 6 + x + y z
 - 2. 6 x + y + z
 - 3. 6 + x y + z
 - 4. 6 x y + z
- 7-18. What is the result of removing parentheses and brackets from the expression

$$(x - y) - [5x - (4 - 8x)]?$$

- 1. -4 + 4x y
- 2. -4 + 14x y
- 3.4 12x y
- 4.4 14x + y
- 7-19. If an expression in parentheses is preceded by a minus sign, what happens to the signs of its terms when the parentheses are removed?
 - 1. The signs remain unchanged.
 - 2. The plus signs are changed to minus signs and the minus signs are left unchanged.
 - 3. The minus signs are changed to plus signs and the plus signs are left unchanged.
 - 4. The plus signs are changed to minus signs and the minus signs are changed to plus signs.

7-20. Which of the following expressions is equivalent to the expression

$$8x - y - 7 + 14x$$
?

- 1. (8x y) (7 + 14x)
- 2. (8x y) (7 14x)
- 3. -(8x y) + (7 14x)4. -(8x y) + (7 + 14x)
- 7-21. When the polynomial 6x z y + 4 is grouped by enclosing the first two terms in parentheses preceded by a minus sign, and the last two terms in parentheses preceded by a plus sign, what is its appearance?
 - 1. -(6x z) + (y + 4)
 - 2. -(-6x + z) + (-y + 4)
 - 3. -(-6x z) + (-y 4)
 - 4. -(-6x + z) + (y 4)
- 7-22. The product of x^y and x^z is
 - 1. x^{yz}
- 3. x(y + z)
- 2. 2xyz
- 4. 2x(y + z)
- 7-23. What is the product of $7r^3st^2$ and $5rs^2t^3$?
 - 1. $12r^2s^3t$
- $3.35r^2st$
- 2. 12r4st5
- 4. $35r^4s^3t^5$
- 7-24. If two monomials contain a common literal factor and one monomial is divided by the other, the common literal factor in the quotient will have an exponent that is equal to the
 - 1. sum of the exponents of the factor in the two monomials
 - 2. product of the exponents of the factor in the two monomials
 - 3. exponent of the factor in the numerator minus the exponent of the factor in the denominator
 - 4. exponent of the factor in the numerator divided by the exponent of the factor in the denominator
- 7-25. The product of $6a^2b$ and $14a^3b^2is$
 - 1. 20a6b2
- 3. 84a⁵b³
- 2. $20a^5b^3$
- 4. 84a⁶b²
- 7-26. The quotient resulting from dividing

$$16x^2y^3z$$
 by $(-8x^3y^2z)$ is

- 1. -2xy
- 3. $-2x^{-1}y$
- 2. $2x^{-1}y$
- 4. -2xyz⁰

- 7-27. What is the sum of 11p 7q r,
 - 3p + q 9r, and -p q + 2r?
 - 1. 13p 9q + r
 - 2. 13p 7q 8r
 - 3. 14p + q 6r
 - 4. 14p q + 10r
- 7-28. What is the result of subtracting
 - -3r s + 6t from 5r + 2s t? 1. 2r s 7t

 - 2. 2r + s + 5t
 - 3. 8r + s 5t
 - 4. 8r + 3s 7t
- 7-29. What is the result when the expression

$$(3x - 2y + 4) - (-6x + y - 5)$$

- is simplified?
- 1. -3x y 1
- 2. -3x y + 1
- 3. 9x y 14. 9x 3y + 9
- 7-30. What is the product when (-4y + x 7)
 - is multiplied by x?
 - 1. $4xy + x^2 7x$
 - 2. $-4xy + x^2 + 7x$
 - 3. $4xy x^2 + 7x$
 - 4. $-4xy + x^2 7x$
- 7-31. What is the product of

$$(p - q)$$
 and $(r - s - t)$?

- 1. pr ps pt qr + qs + qt
- 2. pr ps + pt qr + qs qt
- 3. pr + ps pt + qr qs qt
- 4. pr + ps + pt + qr + qs qt
- 7-32. What is the result of multiplying

$$(5v - 7)$$
 by $(2v + 9)$?

- 1. $10v^2 + 31v 63$
- 2. $10v^2 + 31v + 2$
- 3. $10v^2 31v + 63$
- 4. $10v^2 + 59v + 63$
- 7-33. What is the product when $9x^2 6x + 1$ is multiplied by 3x + 2?
 - 1. $27x^3 36x^2 + 15x 2$
 - 2. $27x^3 36x^2 15x + 2$
 - 3. $27x^3 9x 2$
 - 4. $27x^3 9x + 2$
- 7-34. The product

$$(x + y)(x + y) = x^2 + 2xy + y^2$$

is called the product of the sum and difference of two numbers.

- 7-35. The product of (x + 3)(x 4) is $x^2 - x - 12$.
- 7-36. The product of $x^4 y^4$ and $x^4 + y^4$ is

 - 1. $x^8 y^8$ 3. $x^8 2x^4y^4 + y^8$

 - 2. $x^{16} y^{16}$ 4. $x^{16} 2x^4y^4 + y^{16}$
- 7-37. The denominator of the fraction

$$\frac{x}{y - \sqrt{z}}$$

- can be rationalized by 1. multiplying both the numerator and
- denominator by $y + \sqrt{z}$ 2. multiplying both the numerator and
- denominator by $y \sqrt{z}$ 3. multiplying both the numerator and denominator by $\sqrt{z} - y$
- 4. squaring both the numerator and denominator
- 7-38. Rationalizing the binomial denominator of which of the following fractions results in the fraction equaling $8\sqrt{5}$ - 16 ?

 - 1. $\frac{8}{\sqrt{5}-2}$ 3. $\frac{8}{\sqrt{2}+5}$
 - 2. $\frac{8}{\sqrt{2}-5}$ 4. $\frac{8}{\sqrt{5}+2}$
- 7-39. Which of the following statements is true of the square of the difference of two numbers but not of the square of the sum of the same numbers?
 - 1. There is no middle term.
 - 2. The sign of the middle term is negative.
 - 3. The middle term is equal to the product of the numbers.
 - 4. The middle term is four times the product of the numbers.
- 7-40. Why is the product of the sum and the difference of two numbers considered a special product?
 - 1. The middle term is always irrational.
 - 2. The sign of the middle term is always negative.
 - 3. The value of the first term is always equal to the middle term.
 - 4. The product can be written without going through the whole multiplication process.
- 7-41. The square of $(6 \sqrt{3})$ is
 - 1. 9
- 3. 36 $10\sqrt{3}$
- 2. $24 12\sqrt{3}$ 4. $39 12\sqrt{3}$

- 7-42. Both (6x + 8 y) f and 6 f (6x + 8 y)may be solved by the distributive method.
- 7-43. What is the result of dividing

$$27x^{4}y^{4}z^{4} + 9x^{2}y^{4}z^{6} - 12x^{3}yz$$

by $3x^{2}yz$?

- 1. $9x^4yz + 3yz 4xyz$
- 2. $9xy^2z^2 + 3y^2z^4 4x$
- 3. $9x^2y^3z^3 + 3y^3z^5 4x$
- 4. $9x^3y^3z^3 + 3y^3z^4 4xy$
- 7-44. Which of the following factors is a monomial factor of

$$p^2qr^3 - pr^2s + pq^2rs^3$$
?

- 1. pr
- 3. p^2r
- $2. qr^2$
- 4. pqs³
- 7-45. What is the numerical coefficient of the xy term in the expression obtained by dividing

$$2x^3 + 5x^2y + xy^2 - 8y^3$$
 by $x - y$?

- 1. 2
- 3. 7
- 2. 5
- 4.8
- 7-46. Division of

$$6x^4 - 28x^3 + 19x^2 - 14x - 1$$
 by $3x - 2$

leaves a remainder of

- 1. 0

- 2. $\frac{-1}{3x-2}$ 4. $\frac{-9}{3x-2}$
- 7-47. The polynomial $4 6x^3 + 8x x^2$ arranged in the order of descending
 - powers of x is 1. $4 + 8x x^2 6x^3$

 - 2. $-6x^3 + 8x x^2 4$ 3. $-6x^3 x^2 + 8x + 4$
 - 4. $8x + 4 (6x^3 + x^2)$
- 7-48. What is the quotient when

$$x^3 - 8x^2 + 16x - 5$$
 is divided by $x - 5$?

- 1. $x^2 x + 5$
- 2. $x^2 3x + 2$
- 2. $x^2 3x + 2$ 3. $x^2 3x + 1$ 4. $x^2 + 13x 49 + \frac{240}{(x 5)}$

7-49. The division problem

$$\begin{array}{r}
x^2 - 3x + 4 \\
x^3 - 5x^2 + 10x - 8 \\
\underline{x^3 - 2x^2} \\
-3x^2 + 10x \\
\underline{-3x^2 + 6x} \\
4x - 8 \\
4x - 8
\end{array}$$

can be condensed to which of the following?

4.
$$x - 2$$

$$\begin{array}{r}
x^2 - 3x + 4 \\
\hline
x^3 - 5x^2 + 10x - 8 \\
x^3 - 3x + 4x - 8
\end{array}$$

7-50. The division problem in item 7-49 can be further condensed to

1.
$$-2$$

$$\begin{array}{rrrrr}
1 & -3 & 4 \\
1 & -5 & 10 & -8 \\
 & -2 & -6 & -8 \\
\hline
 & 1 & -3 & 4 & 0
\end{array}$$

4.
$$-2$$

$$\begin{array}{rrrr}
1 & -3 & 4 \\
\hline
1 & -5 & 10 & -8 \\
1 & -3 & 4 & -8
\end{array}$$

- 7-51. If $2x^5 6x^4 + 8x$ is divided by x 7, the results of each successive step of multiplication and subtraction are determined by the
 - 1. x's
 - 2. 2, -6, and 8
 - 3. 2, -6, 8, and -7
 - 4. 2, -6, 8, and the x's

- 7-52. Synthetic division is limited to divisors of the form x - a and $x^2 - a$.
- 7-53. The division of $x^3 5x^2 + 11x 15$ by x - 3 using synthetic division becomes

7-54. In the form

the result of dividing $3x^3 - 4x^2 + x + 6$

by
$$x + 2$$
 is
1. $3x^2 - 4x + 1 + \frac{6}{x + 2}$

2.
$$3x^2 - 10x + 21 - \frac{36}{x + 2}$$

3.
$$6x^2 - 20x + 42 + \frac{6}{x + 2}$$

4.
$$6x^2 - 20x + 42 - \frac{36}{x + 2}$$

- 7-55. The prime factors of x^2 16 are x + 4and x - 4.
- 7-56. The prime factors of $x^3 9x$ are 1. x^3 , -9x 2. x, $x^2 9$

 - 3. x, -3, +3 4. \hat{x} , x 3, x + 3
- 7-57. Express the polynomial

 $5x^2y - 10xy + 25xy^2$ as a product of prime factors.

- 1. $5x^2y^2(1 2x^{-2}y^{-2} + 5)$
- 2. $y(5x^2 10x + 25xy)$
- 3. $x(5xy 10y + 5y^2)$
- 4. 5xy(x 2 + 5y)
- 7-58. Factor 2yr+s 4yr into prime factors.
 - 1. $2(y^{r+s} 2y^r)$ 3. $2y^{r+s} 4y^r$
 - 2. $2y(y^8 2y^r)$ 4. $2y^r(y^8 2)$
- 7-59. The algebraic form ab + ac xb xc is equivalent to the form (a - x)(b + c).
- 7-60. What are the factors of 4x 2y + xy 8?
 - 1. (4 y)(x + 2)
 - 2. (y 4)(x + 2)
 - 3. (y + 4)(2 x)
 - 4. (y + 4)(x 2)

7-61. What is the factored form of

$$98x^3 - 32xy^2$$
?

- 1. 2(7x + 4y)(7x 4y)
- 2. 4(7x + 2y)(7x 2y)
- 3. 2x(7x + 4y) (7x 4y)
- 4. 4x(7x + 2y)(7x 2y)

7-62. What are the factors of the expression

$$2a^{3}b - 8ab^{3}$$
?

- 1. 2ab(2b a)(2b + a)
- 2. 2ab(a 2b)(a + 2b)
- 3. $2a^2b^2(a b)(a + b)$
- 4. $2a^2b(a 2b)(a + 2b)$

7-63. What are the prime factors of $81x^4 - 1$?

- 1. $(9x^2 + 1)(9x^2 + 1)$
- 2. $(9x^2 1)(3x + 1)(3x + 1)$
- 3. $(3x 1)(3x + 1)(9x^2 + 1)$
- 4. (3x 1)(3x + 1)(3x + 1)(3x + 1)

7-64. What are the factors of $8a^3 - 1$?

- 1. $(2a + 1)(4a^2 + 2a + 1)$
- 2. $(2a + 1)(4a^2 2a + 1)$
- 3. $(2a 1)(4a^2 2a + 1)$
- 4. $(2a 1)(4a^2 + 2a + 1)$

7-65. Which of the following trinomials is a perfect square?

- 1. $36t^2 + 9s^2 9st$
- 2. $36t^2 + 9s^2 18st$
- 3. $36t^2 + 9s^2 + 18st$
- 4. $36t^2 + 9s^2 36st$

7-66. In order for the incomplete trinomial

$$16x^2 + 25y^2 + ?$$

to be a trinomial square, the missing term must be

- 1. ±400xy
- 2. $\pm 400x^2y^2$
- 3. ±20xy
- 4. ±40xy
- 7-67. Assume that a trinomial can be factored into two binomials that have a common term. The unlike terms will be opposite in sign and the positive one will be numerically smaller than the negative one only if the
 - 1. second and third terms of the trinomial are both positive
 - 2. second and third terms of the trinomial are both negative
 - 3. second term of the trinomial is positive and the third term is negative
 - 4. second term of the trinomial is negative and the third term is positive

- 7-68. What are the factors of $x^2 x 20$?
 - 1. (x 4)(x 5)

 - 2. (x 4)(x + 5)3. (x 5)(x + 4)4. (x 21)(x + 1)
- 7-69. What are the factors of $x^2 x + 30$? 1. (x 6)(x + 5)2. (x 6)(x 5)

 - 3. (x + 6)(x 5)
 - 4. It cannot be factored.
- 7-70. What are the factors of $y^2 + 48y 100$? 1. (y 50)(y 2)2. (y 50)(y + 2)

 - 3. (y + 50) (y 2)
 4. It cannot be factored.
- 7-71. What are the factors of the trinomial expression

$$6m^2 - 13m + 6$$
?

- 1. (3m + 2)(2m + 3)
- 2. (3m 2)(2m + 3)3. (3m 2)(2m 3)
- 4. It cannot be factored.
- 7-72. A fraction can be reduced to lower terms only if the
 - 1. numerator is greater than the denominator
 - 2. denominator is greater than the numerator
 - 3. numerator and denominator both contain numerical factors
 - 4. numerator and denominator contain common factors

7-73. Which of the following fractions takes the form

$$\frac{2a}{7x^2z^2}$$

after it has been reduced to its lowest terms?

- 1. $\frac{12a^2xz}{42ax^3z^3}$ 3. $\frac{36a^2x^2z}{49axz^3}$
- 2. $\frac{12a^2x}{49x^2z}$ 4. $\frac{36ax^3z^2}{56a^2x^5z^4}$
- 7-74. What is the result when the fraction

$$\frac{y^2 - 9}{y^2 + 6y + 9}$$

is reduced to its lowest terms?

- 1. $\frac{-1}{6y}$
- 3. $\frac{y-3}{y+3}$
- 2. $\frac{y + 3}{y 3}$
- 4. It cannot be
- 7-75. What is the product when

$$\frac{2m^2 - 5m - 12}{2m + m^3 + 3m^2}$$

is multiplied by

$$\frac{m^2 + m}{7m - 3 + 6m^2}$$
?

1.
$$\frac{m(m-4)}{(3m-1)(m+2)}$$

2.
$$\frac{(m-4)}{(3m-1)(m+2)}$$

3.
$$\frac{m+1}{(3m-1)(m-2)}$$

4.
$$\frac{m(m+1)}{(3m-1)(m+2)}$$